Collection of bimagic simple magic squares of order 10
Source: Homepage: www.multimagie.com
(numbers 3)

10|1|1|2 19 70 1 66 74 73 60 68 72|
10|1|2|58 77 15 3 65 4 67 69 71 76|
10|1|3|62 63 82 75 61 59 79 6 5 13|
10|1|4|49 18 14 78 98 40 25 96 43 44|
10|1|5|94 41 27 42 35 91 21 95 37 22|
10|1|6|93 39 23 38 31 90 33 30 29 99|
10|1|7|34 100 36 83 45 24 26 28 97 32|
10|1|8|8 85 64 57 7 56 80 48 16 84|
10|1|9|54 11 86 47 87 12 92 20 50 46|
10|1|10|51 52 88 81 10 55 9 53 89 17|
Author: F. Jansson January 2004, Finland, Report: bimagic simple

10|2|1|81 44 41 63 88 3 49 53 1 82|
10|2|2|26 38 92 90 25 45 42 62 2 83|
10|2|3|96 97 31 46 68 8 22 24 57 56|
10|2|4|16 100 9 75 11 71 43 54 65 61|
10|2|5|28 48 7 51 34 91 95 59 77 15|
10|2|6|13 27 87 14 60 89 55 64 79 17|
10|2|7|72 36 52 18 86 47 23 6 66 99|
10|2|8|58 10 74 30 84 50 5 94 67 33|
10|2|9|80 76 39 98 37 32 78 4 21 40|
10|2|10|35 29 73 20 12 69 93 85 70 19|
Author: Christian Boyer, France, October 2006, Report: bimagic simple

10|3|1|89 51 52 88 53 55 10 9 17 81|
10|3|2|59 82 62 61 13 6 79 75 63 5|
10|3|3|1 2 66 68 72 74 70 73 60 19|
10|3|4|42 41 27 22 91 21 35 37 95 94|
10|3|5|57 80 64 8 16 85 56 48 7 84|
10|3|6|54 20 86 92 11 50 12 87 46 47|
10|3|7|78 98 14 40 43 18 44 96 25 49|
10|3|8|3 65 4 77 71 58 76 15 67 69|
10|3|9|39 30 33 23 90 38 99 31 93 29|
10|3|10|83 36 97 26 45 100 24 34 32 28|
Author: Pan Fengchu, China, September 2007, Report: bimagic simple



Transformation from 2D to 2D
(new 3 variants)



Number    Galaxy

collection of bimagic simple squares of order 10
(new variants 3)

10|4|1|99 82 31 100 35 27 28 41 33 29|
10|4|2|43 24 86 98 36 97 34 32 30 25|
10|4|3|39 38 19 26 40 42 22 95 96 88|
10|4|4|52 83 87 23 3 61 76 5 58 57|
10|4|5|7 60 74 59 66 10 80 6 64 79|
10|4|6|8 62 78 63 70 11 68 71 72 2|
10|4|7|67 1 65 18 56 77 75 73 4 69|
10|4|8|93 16 37 44 94 45 21 53 85 17|
10|4|9|47 90 15 54 14 89 9 81 51 55|
10|4|10|50 49 13 20 91 46 92 48 12 84|
Author: Bogdan Golunski, Germany, Juli 2005, calculation method I, Report: bimagic simple

10|5|1|90 33 30 29 99 93 39 23 38 31|
10|5|2|24 26 28 97 32 34 100 36 83 45|
10|5|3|56 80 48 16 84 8 85 64 57 7|
10|5|4|12 92 20 50 46 54 11 86 47 87|
10|5|5|55 9 53 89 17 51 52 88 81 10|
10|5|6|74 73 60 68 72 2 19 70 1 66|
10|5|7|4 67 69 71 76 58 77 15 3 65|
10|5|8|59 79 6 5 13 62 63 82 75 61|
10|5|9|40 25 96 43 44 49 18 14 78 98|
10|5|10|91 21 95 37 22 94 41 27 42 35|
Author: Bogdan Golunski, Germany, Juli 2005, calculation method II, Report: bimagic simple

10|6|1|11 68 71 72 2 8 62 78 63 70|
10|6|2|77 75 73 4 69 67 1 65 18 56|
10|6|3|45 21 53 85 17 93 16 37 44 94|
10|6|4|89 9 81 51 55 47 90 15 54 14|
10|6|5|46 92 48 12 84 50 49 13 20 91|
10|6|6|27 28 41 33 29 99 82 31 100 35|
10|6|7|97 34 32 30 25 43 24 86 98 36|
10|6|8|42 22 95 96 88 39 38 19 26 40|
10|6|9|61 76 5 58 57 52 83 87 23 3|
10|6|10|10 80 6 64 79 7 60 74 59 66|
Author: Bogdan Golunski, Germany, Juli 2005, calculation method III, Report: bimagic simple